Journal of Organometallic Chemistry, 190 (1980) C79–C83 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTIVITY MODES OF BRIDGED BIMETALLIC $[(\eta^5 - C_5H_5)Fe(CO)]_2 - \mu$ dppe WITH ELECTROPHILES. PREPARATION AND REACTIONS OF BIMETALLIC HYDRIDE COMPLEXES

S.J. LaCROCE, K.P. MENARD, and A.R. CUTLER* Department of Chemistry, Wesleyan University, Middletown, Connecticut 06457 (U.S.A.) (Received January 11th, 1980)

Summary

The complex $[(\eta^5 - C_5H_5)Fe(CO)]_2-\mu$ -dppe (dppe = ethane-1,2-bisdiphenylphosphide) (I) reacts with electrophiles through a μ -CO and forms Lewis acid O-adducts with alkylating reagents (giving cationic μ_2 -alkoxycarbyne compounds) or with alkylaluminum compounds. Treatment of I with acid affords a stable μ_2 -hydride salt (IV), $[CpFe(CO)]_2(\mu_2-H)(\mu_2-dppe)^+$, which serves as an intermediate in the stepwise hydrogenation (reversibly) of I to a bridged bimetallic dihydride, $[CpFe(CO)H]_2-\mu_2$ -dppe. This dihydride serves as a hydride donor, regenerating IV, towards Ph_3C^+ or $CpFe(CO)_2(\eta^2-CH_2=CH_2)^+$ hydride acceptors. The necessity of the μ_2 -dppe as a "mechanical linkage" in facilitating some bimetallic reactions is also established.

We report that $Cp_2Fe_2(\mu-CO)_2(\mu-dppe)^*$ (I) [1] exhibits an enhanced bimetallic reactivity towards electrophiles relative to its parent complex, $Cp_2Fe_2(CO)_4$. The μ -dppe ligand both increases the electron density of the bimetallic unit (as reflected in the IR, $\nu_{CO}(CH_2Cl_2)$ 1674 cm⁻¹ vs. 1771 cm⁻¹ for the analogous μ -CO ligands on $Cp_2Fe_2(CO)_4$), and also serves as a mechanical linkage that associates both halves.

*Cp represents η^{5} -C₅H₅, and dppe depicts ethane-1,2-bisdiphenylphosphide.

Bridging carbonyl ligands generally exhibit Lewis basicity and form Lewis acid O-bonded adducts [2]. Accordingly, titration of bimetallic I with triethylaluminum in CH₂Cl₂ produces the 1:1 adduct II (IR, ν_{CO} shift to 1727 cm⁻¹ with one-half intensity), analogous to that established with Cp₂Fe₂(CO)₄ [2a]. The interaction of powerful alkylating agents and I, however, leads to isolable cationic adducts III as O-alkylated bridging carbonyl complexes. These O-alkylated adducts (III), μ_2 -alkoxycarbyne complexes, quantitatively develop upon treatment of I with trialkyloxonium salts or methyl fluorosulfonate in CH₂Cl₂ (IR: ν_{CO} shift to 1759 cm⁻¹ with one-half intensity). Ether precipitation, followed by reprecipitation from acetone-ether, leads to 80% yields of the two salts IIIa,b as air-stable brown solids^{*}. Adduct formation (II or III) reverses upon treatment with one equivalent of iodide or triethylamine.

O-alkylated adducts III represent the first examples of either strictly bimetallic or cationic complexes possessing a μ_2 -alkoxycarbyne ligand. Examples of neutral and anionic μ_2 -alkoxycarbyne complexes have been prepared by alkylation of μ_2 carbonyls on several anionic cluster systems [3]. Cationic binuclear iron complexes containing a bridging alkylidyne ligand μ_2 -CR[Cp₂Fe₂(CO)₃]⁺ have also been recently reported [4]. Until now, binuclear organometallic complexes bearing μ -CO ligands that are sufficiently nucleophilic for O-alkylation and conversion to μ -alkoxycarbyne groups have not been reported.

The reduction of μ_2 -CO groups to μ_2 -C₁ ligands, via μ_2 -alkoxy (or -hydroxy) carbyne complexes, represents one approach to catalytic homogeneous hydrogenation of carbon monoxide, or Fischer Tropsch chemistry [5]. We therefore considered the possibility of Lewis acid O-complexation of a μ -CO on I followed by hydride addition at the activated μ -C atom. Borohydride reagents, however, readily react with II or III under a variety of reaction conditions and eliminate the in-

C80

^{*}All new compounds gave satisfactory C,H-elemental analyses, IR, and NMR data in accord with the proposed structures.

tact starting dimer I. Diisobutylaluminum hydride reversibly forms a 1:1 adduct in CH₂Cl₂ with I (analogous to II), which does not reduce (even with excess aluminum reagent) the μ -CO. Continuing studies are attempting to establish the appropriate Lewis acid activator and hydride donor for reduction of μ_2 -CO ligands to μ_2 -carbene groups.

The two electron Fe—Fe bond in I exhibits sufficient basicity to undergo protonation and form a cationic bridging hydride compound IV with trifluoroacetic acid: IR, $\nu_{CO}(CH_2Cl_2)$ 1953 cm⁻¹. Treatment of I in CH₂Cl₂ with HBF₄· OMe₂, followed by precipitation with ether, affords a green-air stable product (iV) in 90% yield: NMR (acetone) δ -36.8 ppm (t, J = 28 Hz, 1H, μ_2 -H). One equivalent of triethylamine or even iodide (albeit slowly) quantitatively effects deprotonation of IV to I in CH₂Cl₂ solution. Analogous cationic μ_2 -hydride compounds generated by protonation of a metal—metal bond have been detected for Cp₂Fe₂(CO)₄ [6] in acidic media and isolated from other bimetallic complexes [7].

The cationic μ_2 -hydride compound IV represents an intermediate stage in the stepwise hydrogenation of a Fe—Fe bond in I to the bimetallic dihydride complex V. Sodium borohydride converts IV in tetrahydrofuran (THF) solution to V, which can be isolated in 62% yield after chromatography on alumina with benzene. The dihydride V is a yellow-air-sensitive solid possessing chemical attributes of the analogous monomer* CpFe(CO)Ph₃P(H) (VI) [8]: NMR, VI (C₆H₆): δ -12.7 ppm (d, J = 74 Hz, Fe—H), V (C₆H₆): δ -13.1 ppm (d, J = 74 Hz, 2H, Fe—H); IR, VI (CH₂Cl₂): ν_{CO} 1915 cm⁻¹, V (CH₂Cl₂): ν_{CO} 1910 cm⁻¹. Thus V also exhibits the free radical reactivity of most transition metal hydrides [10] and instantaneously forms the bimetallic dichloride VII in chloroform.

One equivalent of trityl carbocation or of the η^2 -ethylene complex CpFe(CO)₂-(CH₂=CH₂)⁺ in CH₂Cl₂ rapidly and quantitatively converts V to IV. The reduction of the ethylene complex to the η^1 -ethyl compound CpFe(CO)₂CH₂CH₃ corresponds to intermolecular transfer of hydride from a transition organometallichydride complex to a coordinated ligand**.

Interconversions between I = IV = V merit consideration for two reasons. (1) Overall conversion of I to V, stepwise hydrogenation of a metal-metal bond, exemplifies separate addition of a Lewis acid and a Lewis base to a metal-metal bond without disrupting the bimetallic unit [7a]. (2) The reverse sequence, V to

^{*}A linked bimetallic-dihydride derivative of CpMo(CO)₃H, but joined through the Cp rings [9a], also undergoes reactions established for its monomer. Other symmetrical bimetallic dihydride complexes have been reported [7b,9b].

^{**}A publication detailing the use of VI and other mononuclear organometallic hydride complexes in effecting intermolecular hydride transfer to coordinated alkene and carbene ligands is in press [15].

I, may serve as a prototypal mechanism of sequential hydride and proton transfer from two transition metal hydride fragments on adjacent metals in effecting hydrogenation of another coordinated substrate.

Facility of these bimetallic-reaction derives in part from the role of the μ -dppe ligand in associating the two halves of I. Indeed, the pronounced stability of I contrasts the inability to prepare unlinked bis-tertiary phosphine derivatives of Cp₂Fe₂(CO)₄ [11]. Attempts at studying μ -hydride complexes analogous with IV, but otherwise lacking the μ -diphosphine, further demonstrates the importance of the μ -dppe mechanical linkage.

Treatment of a yellow $CH_2 Cl_2$ solution of VI with one half equivalent of trityl carbocation generates an emerald green solution and shifts its IR ν_{CO} of 1915 cm⁻¹ to 1961 cm⁻¹. Further characterization of this product, tentatively formulated as $[CpFe(CO)Ph_3P]_2H^+$, proved difficult as it readily decomposes to $CpFe(CO)_2Ph_3P^+$. An analogous μ_2 -H cation, $[CpMo(CO)_3]_2H^+$, has been reported as the result of the reaction of $CpMo(CO)_3H$ (two equivalents) with Ph_3C^+ [12]. Preliminary results are also in accord with VI interacting with one equivalent of either $CpFe(CO)_3^+$ or $CpFe(CO)_2THF^+$ and generating $CpFe(CO)_2-H Fe(CO)-Ph_3PCp^+$, before decomposing to $CpFe(CO)_2Ph_3P^+$ and $Cp_2Fe_2(CO)_4$. $CpFe(CO)_2Ph_3P^+$ results from the known decomposition of $CpFe(CO)Ph_3P^+$ [13], and $Cp_2Fe_2(CO)_4$ comes from $CpFe(CO)_2H$ [14]. Clearly the dppe mechanical linkage within IV retards the detrimental dissociation to the neutral metal hydride and cationic coordinatively unsaturated halves, $CpFe(CO)H-PPh_2CH_2 CH_2Ph_2P-Fe(CO)Cp$, which prevails for the unlinked μ -H cations.

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, and to Wesleyan University for support of this research.

References

- 1 R.J. Haines and A.L. DuPreez, J. Organometal. Chem., 21 (1970) 181; Inorg. Chem., 11 (1972) 330. 2 (a) A. Alich, N.J. Nelson, D. Strope and D.F. Shriver, Inorg. Chem., 11 (1972) 2976; (b) D.F. Shriver,
- 2 (a) A. Alich, N.J. Nelson, D. Strope and D.F. Shriver, inorg. Chem., 11 (1972) 2976; (b) D.F. Shrive, J. Organometal. Chem., 94 (1975) 259; J.R. Wilkinson and L.J. Todd, ibid., 118 (1976) 199.
- 3 D.F. Shriver, D. Lehman and D. Strope, J. Amer. Chem. Soc., 97 (1975) 1594; H.A. Hodali, D.F. Shriver and C.A. Ammlung, ibid., 100 (1978) 5239; P.D. Gavens and M.J. Mays, J. Organometal. Chem., 162 (1978) 389; B.F.G. Johnson, J. Lewis, A.G. Orpen, P.R. Raithby and G. Süss, ibid., 173 (1979) 187; H.A. Hodali and D.F. Shriver, Inorg. Chem., 18 (1979) 1236.
- 4 M. Nitay, W. Priester and M. Rosenblum, J. Amer. Chem. Soc., 100 (1978) 3620.
- 5 (a) J. Keister, J. Chem. Soc. Chem. Commun., (1979) 214; G. Fachinetti, ibid., (1979) 397; G. Mignani,
 H. Patin and R. Dabard, J. Organometal. Chem., 169 (1979) C19; (b) C. Masters, Adv. Organometal.
 Chem., 17 (1979) 61.

- 6 A. Davison, W. McFarlane, L. Pratt and G. Wilkinson, J. Chem. Soc., (1962) 3653; D.A. Symon and T.C. Waddington, J. Chem. Soc. (A), (1971) 953; D.C. Harris and H.B. Gray, Inorg. Chem., 14 (1975) 1215.
- 7 (a) H. Werner and W. Hoffmann, Ang. Chem. Int. Ed. Engl., 18 (1979) 158; (b) J.J. Bonnet, A. Thorez,
 A. Maisonnat, J. Galy and R. Poilblanc, J. Amer. Chem. Soc., 101 (1979) 5940; (c) M.P. Brown,
 B. J. Puddenbatt, M. Bachidi and K.B. Seddon, J. Chem. Soc., Dalton Trans., (1978) 516.
- R.J. Puddephatt, M. Rashidi and K.R. Seddon, J. Chem. Soc. Dalton Trans., (1978) 516.
 S. Su and A. Wojcicki, J. Organometal. Chem., 27 (1971) 231; P. Kalck and R. Poilblanc, C.R. Acad. Sci. Paris, 274 (1972) 66; D.L. Reger and E.C. Culbertson, J. Amer. Chem. Soc., 98 (1976) 2789.
- 9 (a) P.A. Wegner and V.A. Uski, Inorg. Chem., 18 (1979) 646; (b) T.H. Tulip, T. Yamagata, T. Yoshida, R.D. Wilson, J.A. Ibers and S. Otsuka, ibid., 18 (1979) 2239.
- 10 R.A. Schunn in E.L. Muetterties (Ed.), Transition Metal Hydrides, Marcel Dekker, New York, N.Y., 1971, p. 244.
- 11 A.J. White, J. Organometal. Chem., 168 (1979) 197; R.J. Haines and A.L. duPreez, Inorg. Chem., 8 (1969) 1459.
- 12 W. Beck and K. Schloter, Z. Naturforsch. B, 33 (1978) 1214.
- 13 D.L. Reger, C.J. Coleman and P.J. McElligott, J. Organometal. Chem., 173 (1979) 171.
- 14 A. Davison, M.L.H. Green and G. Wilkinson, J. Chem. Soc., (1961) 3172.
- 15 T. Bodnar, S.J. LaCroce and A.R. Cutler, J. Amer. Chem. Soc., in press.